Problem 199 Answer

Let pn be the probability you should pick n.

p1 = (x-1+(1-x)0.5)/x.

x=1-y2.

y=z-(2/3). y is also the solution to the equation y^3+2y^2-2=0.

z=A+B.

A=(-b/2+((b^2/4)+(a^3/27))^0.5)^(1/3)

B=(-b/2-((b^2/4)+(a^3/27))^0.5)^(1/3)

a=-4/3.

b=-2

After a lot of messy math, p1 = 0.456310987.

pn = pn-1 × (1-p1).

Here are the first 34 values of p:

p1=0.456310987308

p2=0.24809127017

p3=0.134884497736

p4=0.073335219402

p5=0.039871553032

p6=0.021677725303

p7=0.011785941067

p8=0.006407886662

p9=0.003483897573

p10=0.001894156832

p11=0.001029832258

p12=0.000559908483

p13=0.000304416091

p14=0.000165507684

p15=0.000089984709

p16=0.000048923698

p17=0.000026599277

p18=0.000014461735

p19=0.000007862686

p20=0.000004274856

p21=0.000002324192

p22=0.000001263638

p23=0.000000687026

p24=0.000000373528

p25=0.000000203083

p26=0.000000110414

p27=0.000000060031

p28=0.000000032638

p29=0.000000017745

p30=0.000000009648

p31=0.000000005245

p32=0.000000002852

p33=0.000000001551

p34=0.000000000843

The probability of winning, assuming any two logicians choose this strategy, is 0.29559774. The probability of a tie is 0.113206772.

Michael Shackleford, A.S.A.