Let pn be the probability you should pick n.
p1 = (x-1+(1-x)0.5)/x.
x=1-y2.
y=z-(2/3). y is also the solution to the equation y^3+2y^2-2=0.
z=A+B.
A=(-b/2+((b^2/4)+(a^3/27))^0.5)^(1/3)
B=(-b/2-((b^2/4)+(a^3/27))^0.5)^(1/3)
a=-4/3.
b=-2
After a lot of messy math, p1 = 0.456310987.
pn = pn-1 × (1-p1).
Here are the first 34 values of p:
p1=0.456310987308
p2=0.24809127017
p3=0.134884497736
p4=0.073335219402
p5=0.039871553032
p6=0.021677725303
p7=0.011785941067
p8=0.006407886662
p9=0.003483897573
p10=0.001894156832
p11=0.001029832258
p12=0.000559908483
p13=0.000304416091
p14=0.000165507684
p15=0.000089984709
p16=0.000048923698
p17=0.000026599277
p18=0.000014461735
p19=0.000007862686
p20=0.000004274856
p21=0.000002324192
p22=0.000001263638
p23=0.000000687026
p24=0.000000373528
p25=0.000000203083
p26=0.000000110414
p27=0.000000060031
p28=0.000000032638
p29=0.000000017745
p30=0.000000009648
p31=0.000000005245
p32=0.000000002852
p33=0.000000001551
p34=0.000000000843
The probability of winning, assuming any two logicians choose this strategy, is 0.29559774. The probability of a tie is 0.113206772.
Michael Shackleford, A.S.A.