Problem 139 Solution

Denote the probability of winning any given get to be p=18/38.

Denote the number of bets made to be n.

Denote the number of winning bets to be w.

The probability of a w wins out of n bets is (n!/(w!*(n-w)!)) * pw * (1-p)n-w

The expected return of n bets is σ (for w=0 to n) (n!/(w!*(n-w)!)) * pw * (1-p)n-w * if(w>n/2,2w-n,w-n/2)

The table below shows the expected gain given the number of wagers made.

Problem 139 Expected Gain
Number
of Bets
Expected
Gain
1 0.210526
2 0.171745
3 0.257618
4 0.219182
5 0.273977
6 0.235800
7 0.275100
8 0.237137
9 0.266779
10 0.229003
11 0.251903
12 0.214296
13 0.232154
14 0.194700
15 0.208607
16 0.171295
17 0.182001
18 0.144822
19 0.152868
20 0.115815
21 0.121605
22 0.084671
23 0.088519
24 0.051698
25 0.053852
26 0.017138
27 0.017797
28 -0.018813
29 -0.019482
30 -0.055994

From the table it can be seen that the maximum profit occurs when the number of bets is 7.


Thanks to Extra Stuff: Gambling Rambling by Peter Griffin for this problem. See chapter 7.

Michael Shackleford, ASA, August 19 1999