Denote the number of bets made to be n.
Denote the number of winning bets to be w.
The probability of a w wins out of n bets is (n!/(w!*(n-w)!)) * pw * (1-p)n-w
The expected return of n bets is (for w=0 to n) (n!/(w!*(n-w)!)) * pw * (1-p)n-w * if(w>n/2,2w-n,w-n/2)
The table below shows the expected gain given the number of wagers made.
Problem 139 Expected Gain | |
Number of Bets |
Expected Gain |
1 | 0.210526 |
2 | 0.171745 |
3 | 0.257618 |
4 | 0.219182 |
5 | 0.273977 |
6 | 0.235800 |
7 | 0.275100 |
8 | 0.237137 |
9 | 0.266779 |
10 | 0.229003 |
11 | 0.251903 |
12 | 0.214296 |
13 | 0.232154 |
14 | 0.194700 |
15 | 0.208607 |
16 | 0.171295 |
17 | 0.182001 |
18 | 0.144822 |
19 | 0.152868 |
20 | 0.115815 |
21 | 0.121605 |
22 | 0.084671 |
23 | 0.088519 |
24 | 0.051698 |
25 | 0.053852 |
26 | 0.017138 |
27 | 0.017797 |
28 | -0.018813 |
29 | -0.019482 |
30 | -0.055994 |
From the table it can be seen that the maximum profit occurs when the number of bets is 7.
Thanks to Extra Stuff: Gambling Rambling by Peter Griffin for this problem. See chapter 7.
Michael Shackleford, ASA, August 19 1999