The table below shows the probability of specific numbers of death using this formula:
Problem 137 | ||
Number of Deaths (x) |
Probability total=x |
Probability total<=x |
0 | 0.00004317 | 0.00004317 |
1 | 0.00043607 | 0.00047924 |
2 | 0.00220019 | 0.00267943 |
3 | 0.00739322 | 0.01007265 |
4 | 0.01861375 | 0.02868640 |
5 | 0.03745311 | 0.06613951 |
6 | 0.06273711 | 0.12887663 |
7 | 0.08998657 | 0.21886319 |
8 | 0.11282407 | 0.33168726 |
9 | 0.12561333 | 0.45730059 |
10 | 0.12574021 | 0.58304080 |
11 | 0.11430928 | 0.69735009 |
12 | 0.09516152 | 0.79251160 |
13 | 0.07305328 | 0.86556489 |
14 | 0.05202279 | 0.91758768 |
15 | 0.03454173 | 0.95212941 |
16 | 0.02147955 | 0.97360896 |
17 | 0.01255845 | 0.98616742 |
18 | 0.00692759 | 0.99309501 |
19 | 0.00361663 | 0.99671164 |
20 | 0.00179188 | 0.99850352 |
21 | 0.00084466 | 0.99934817 |
22 | 0.00037967 | 0.99972784 |
23 | 0.00016307 | 0.99989092 |
24 | 0.00006705 | 0.99995797 |
25 | 0.00002644 | 0.99998441 |
26 | 0.00001002 | 0.99999443 |
27 | 0.00000365 | 0.99999808 |
28 | 0.00000128 | 0.99999936 |
29 | 0.00000043 | 0.99999979 |
30 | 0.00000014 | 0.99999994 |
31 | 0.00000004 | 0.99999998 |
32 | 0.00000001 | 0.99999999 |
33 | 0.00000000 | 1.00000000 |
34 | 0.00000000 | 1.00000000 |
The table shows that if 14 graves were dug then the probability of not running out would be 0.91758768 (the smallest number greater or equal to 90%). So they must dig 14 graves to have a 90% of not running out. To have a 95% chance they must dig 15 and to have a 99% chance they must dig 18.
Pr(d <= g+.5) = 0.90 (The 0.5 is added because the number of deaths must be an integer)
Pr(d-9.5 <= g-10) = 0.90
Pr((d-9.5)/3.1464 <= (g-10)/3.1464) = 0.90
Pr(Z <= (g-9.5)/3.1464) = 0.90
(g-9.5)/3.1464 = 1.28
g =~ 13.527
The number of graves must be an integer, thus we round up to 14.
Michael Shackleford, ASA