Question: In the following diagram, what is the area of the green region?

Answer:

First, let's change the dimensions to 2×1, to simplify the math, reducing the scale of the area by a factor of $10 \times 5 / 2 \times 1 = 25$. We will multiply by 25 at the end to scale back up. Second, let's flip over the image, for reasons we'll see soon. That gives us:
Let's use geometry to solve the problem. Let's place the center of the bottom of the rectangle at coordinate (0,0).

The equation for the circle is \(x^2 + y^2 = 1 \). This illustrates why I wanted to scale down and flip, to get such a simple equation for the circle.

The equation of the blue line is \(y = x/2 + 1/2 \). Let's rewrite that as \(x = 2y - 1 \).

Let's solve for \(x \) and \(y \) to find where the blue line intersects the semicircle.

\[
\begin{align*}
x^2 + y^2 &= 1 \\
(2y - 1)^2 + y^2 &= 1 \\
5y^2 - 4y &= 0 \\
5y - 4 &= 0 \\
y &= 0.8
\end{align*}
\]

Putting that in \(x=2y-1 \) gives us

\[x = 2\times0.8 -1 = 0.6.\]

Next, let's label some of the regions in play.
Let's start by finding the slice of the semicircle identified as \(C + D \). We already know the coordinate where the blue line crossed the semicircle by the green region is \((0.6, 0.8)\). So, the side of triangle \(D \) are 0.6, 0.8, and 1. The area of \(D \) is easily found as \(\frac{1}{2} \times (0.6 \times 0.8) = 0.24 \).

To find \(C \), let's find the area of the slice of the semicircle \(C+D \) and subtract \(D \) from it.

The angle of \(D \) at \((0,0)\) can be expressed as \(\tan^{-1}(3/4) \), \(\cos^{-1}(4/5) \), or \(\sin^{-1}(3/5) \). I'll arbitrarily decide to go with \(\cos^{-1}(4/5) \approx 0.6435 \) (in radians).

The area of the whole circle is \(\pi \), divided up by \(2\pi \) radians, so the area of the circle \((C+D) \) formed by an angle of \(\cos^{-1}(4/5) \) radians is \(\frac{\cos^{-1}(4/5)}{2} \approx 0.3218 \).

We subtract \(D \) from that slice to get the area of \(C = \frac{\cos^{-1}(4/5)}{2} - 0.24 \approx 0.0818 \).

The area of rectangle \(A+C \) is \(0.2 \times 0.6 = 0.12 \). We know \(C \), so we can find \(A \) as \(0.12 - [\cos^{-1}(4/5)/2 - 0.24] = 0.36 - \cos^{-1}(4/5) \approx 0.0382 \).

The two legs of triangle \(B \) are 0.2 and 0.4, thus the area of \(B \) is \(\frac{0.2 \times 0.4}{2} = 0.04 \).
Thus, the green region is $A + B = 0.36 - \cos^{-1}(4/5) + 0.04 = 0.4 - \cos^{-1}(4/5)/2 = \approx 0.0782494$

Remember we scaled the problem down by a factor of 25 at the beginning, so let’s scale that area up by a factor of 25, to account for the 5x10 region to begin with, to get an answer of $10 - 12.5 \times \cos^{-1}(4/5) = \approx 1.95624$

My thanks to Presh Talwalker for this problem, who in turn gives credit to Xavier in Shanghai. Presh’s YouTube channel is Mind Your Decisions. He goes over a solution to this problem at https://www.youtube.com/watch?v=2Seb863FnfU

Michael Shackleford
MathProblems.info
April 20, 2019