What if your opponent selects his number randomly?

Select $\mathrm{z}=1 / 3$ and your edge would be $1 / 6$. You will win $4 / 9$ of the time, lose $5 / 18$ of the time, leaving $5 / 18$ of the time for ties.

We can find a formula for the edge is by integrating the difference of the probability of a win and the probability of a loss over the unit interval and then finding the maximum of that expression.

Let $y=$ referees number (uniform on $[0,1]$)
Let $z=$ my choice of a number from some probability density function (pdf), $f(z)$
Let $x=$ choice of opponent who selects number randomly (uniform on $[0,1]$).
Let $\mathrm{W}=$ Probability of win for player 1 ; we win when $x<z<y$ and when $z<y<x$.
Let $\mathrm{L}=$ Probability of loss for player 1 ; we lose when $x<y<z$ and when $z<x<y$.
Let $\mathrm{T}=$ Probability of tie for player 1 ; we tie when $y<x<z$ and when $y<z<x$.
And $\mathrm{W}+\mathrm{L}+\mathrm{T}=1$.
The edge equals $\mathrm{W}-\mathrm{L}$ in this problem since ties are worth zero.
Generally we would have to solve double integrals to determine W, L, and T , integrating over all possible values of y and z , but since we know y is a uniform random variable, we can use the figures below to determine the necessary probabilities for y, depending on whether $z<x$ or $x<z$.
$z<x:$

y can be greater than x with probability $1-x$, which would be a loss, and y can be between z and x with probability $x-z$, which would be a win.
$z>x$:

y can be greater than z with probability $1-z$, which would be a win, and y can be between z and x with probability $z-x$, which would be a loss.
$\int_{0}^{z}[(1-z)-(z-x)] d z+\int_{z}^{1}[(x-z)-(1-x)] d z=z-\frac{3}{2} z^{2}$
$\frac{d}{d z}\left(z-\frac{3}{2} z^{2}\right)=1-3 z=0 \Rightarrow z=\frac{1}{3}$ when the function achieves its maximum value of $1 / 6$.

