Question: A plane flies at 10 km ./minute in a straight direction and level altitude. When it is directly 5 km . overhead you shoot a heatseeking missile at it, straight up. The missile always points directly at the plane. The missile travels at a constant speed of $11 \mathrm{~km} . /$ minute. How long does it take to hit the plane?

Hint: The integral of $\sqrt{1+u^{2}} d u=\ln \left(u+\sqrt{1+u^{2}}\right)+c$, where $c$ is the constant of integration.

Solution

Assume the shooter is at point $(0,0)$ and the plane is at $(0,5)$ when the missile is fired, traveling easy on the coordinate plane.

Let
$x=x$-coordinate of missile.
$y=y$-coordinate of missile.
$t=$ number of minutes since missile was fired.
$s=$ distance traveled by missle.

At all times the slope of the missile $=\frac{d y}{d x}=\frac{5-y}{10 t-x}$

Invert that:
$\frac{d x}{d y}=\frac{10 t-x}{5-y}$

Let's put dy and (5-y) on the same side.
$(5-y) \frac{d x}{d y}=10 t-x$

Take the derivative of both sides with respect to y . Use the product rule on the left side.
$-\frac{d x}{d y}+(5-y) \frac{d^{2} x}{d y^{2}}=10 \frac{d t}{d y}-\frac{d x}{d y}$
[1] (5-y) $\frac{d x^{2}}{d y^{2}}=10 \frac{d t}{d y}$

Let $\frac{d t}{d y}=\frac{d t}{d s} \circ \frac{d s}{d y}$
$\frac{d s}{d t}=11$, so $\frac{d t}{d s}=\frac{1}{11}$

The equation for the arc-length of $s$ is:
$\mathrm{s}=\int \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y$
$\frac{d s}{d y}=\sqrt{1+\left(\frac{d x}{d y}\right)^{2}}$

Let's go back to equation [1]:
[1] (5-y) $\frac{d x^{2}}{d y^{2}}=10 \frac{d t}{d y}$
(5-y) $\frac{d x^{2}}{d y^{2}}=\frac{10}{11} \times \frac{d s}{d y}$
(5-y) $\frac{d x^{2}}{d y^{2}}=\frac{10}{11} \times \sqrt{1+\left(\frac{d x}{d y}\right)^{2}}$

Let $\mathrm{u}=\frac{d x}{d y}$
$(5-\mathrm{y}) \frac{d u}{d y}=\frac{10}{11} \times \sqrt{1+\mathrm{u}^{2}}$

Let's put the expressions with a $u$ on one side.
$\sqrt{1+\mathrm{u}^{2}} d u=\frac{10}{11} \times(5-y)^{-1} d y$

Using the hint from the integral table:
$\ln \left(u+\sqrt{1+u^{2}}\right)=-\frac{10}{11} \times \ln (5-y)+c$

Take $\exp ()$ of both sides:
$u+\sqrt{1+u^{2}}=(5-y)^{-\frac{10}{11}} \times c$

Let's solve for c . We know that at $\mathrm{t}=0$ that $\frac{d x}{d y}=0$.
$0+\sqrt{1+0^{2}}=(5-0)^{-\frac{10}{11}} \times \mathrm{c}$
$c=5^{\frac{10}{11}}$

$$
\begin{aligned}
& u+\sqrt{1+u^{2}}=(5-y)^{-\frac{10}{11}} \times 5^{\frac{10}{11}} \\
& u+\sqrt{1+u^{2}}=\left(\frac{5-y}{y}\right)^{-\frac{10}{11}} \\
& \sqrt{1+\mathrm{u}^{2}}=\left(\frac{5-y}{y}\right)^{-\frac{10}{11}}-\mathrm{u}
\end{aligned}
$$

Square both sides.
$1+u^{2}=\left(\frac{5-y}{y}\right)^{-\frac{20}{11}}-2 u\left(\frac{5-y}{y}\right)^{-\frac{10}{11}}+u^{2}$
$1=\left(\frac{5-y}{y}\right)^{-\frac{20}{11}}-2 u\left(\frac{5-y}{y}\right)^{-\frac{10}{11}}$
$2 \mathrm{u}\left(\frac{5-y}{y}\right)^{-\frac{10}{11}}=\left(\frac{5-y}{y}\right)^{-\frac{20}{11}}-1$

Remember that $\mathrm{u}=\frac{d x}{d y}$
$\frac{d x}{d y}=0.5 \times\left[\left(\frac{5-y}{y}\right)^{-\frac{10}{11}}-\left(\frac{5-y}{y}\right)^{\frac{10}{11}}\right]$

Take the integral of both sides.
$x=0.5 \times\left[-55 *\left(\frac{5-y}{y}\right)^{\frac{1}{11}}+\frac{55}{21}\left(\frac{5-y}{y}\right)^{\frac{21}{11}}\right]+c$

Let's solve for c , using the fact that when $\mathrm{x}=0, \mathrm{y}=0$.
$0=0.5 \times\left[-55+\frac{55}{21}\right]+c$
$\mathrm{c}=\frac{550}{21}$

So, the equation of the path of the missile is:
$\mathrm{x}=0.5 \times\left[-55 *\left(\frac{5-y}{y}\right)^{\frac{1}{11}}+\frac{55}{21}\left(\frac{5-y}{y}\right)^{\frac{21}{11}}\right]+\frac{550}{21}$

The missile hits the plane when $\mathrm{y}=5$. So solve for x when $\mathrm{y}=5$ :
$x=0.5 \times[0+0]+\frac{550}{21}$

So, the missile strikes the plane when the plane has traveled 550/21 kilometers. The plane travels at 10 kilometers per minute, so it would have taken $55 / 21=2.6195$ minutes $=157.1429$ seconds to get that far.

This graph shows the path of the missile. The end at $(26.195,5)$ is where it strikes the plane.


Michael Shackleford -- MathProblems.info

