Coin Toss Problem

Problem:

Given a coin with probability p of landing on heads after a flip, what is the probability that the number of heads will ever equal the number of tails assuming an infinite number of flips?

Solution:

Think of this problem instead as one of a random walk along a number line. Let 0 be the starting point, p be the probability of moving to the right, and q be the probability of moving to the left.

Let $B=$ probability of ever moving one to the left from where you are.
Let $\mathrm{A}=$ probability of revisiting current square from the right.
$B=q+A q+A^{2} q+A^{3} q+\ldots=q /(1-A)$.
$A=p B-->B=A / p-->B=A /(1-q)$.
$q /(1-A)=A /(1-q)-->A=q, 1-q$.
However, A must be less than or equal to both p and q , thus the reasonable solution is $A=\min (q, 1-q)$.

Redo the above only reverse the words left and right and A will still equal min(q,1-q). One ramification of this is that the probability of revisiting 0 is the same from both the left as the right. This stands to reason since any path has a mirror image on the other side of equal probability. So the answer is $2 * \min (\mathrm{q}, 1-\mathrm{q})$. Where I am a little uncomfortable is dismissing the other solution of A. I believe I can do so but can not put into words why.

