Coin Toss Problem

David O. Beim
Columbia University

Problem:

Given a coin with probability p of landing on heads after a flip, what is the probability that the number of heads will ever equal the number of tails assuming an infinite number of flips?

Solution:

We are interested in $\mathrm{H}-\mathrm{T}$, the number of heads minus the number of tails. After one flip, $\mathrm{H}-\mathrm{T}$ will be either 1 or -1 . Beyond this, pathways branch out; some will reach equality and perhaps some not. To avoid double-counting, we must terminate all paths that achieve equality, observing what fraction of the possible paths we terminate. The $\mathrm{H}-\mathrm{T}>0$ process is separated from the $\mathrm{H}-\mathrm{T}<0$ process, as follows:
$\begin{array}{lllll}\mathrm{H}-\mathrm{T} & \mathrm{n}=1 & 2 & 3 & 4\end{array}$
3
3

1
0
-1
-2

-3

Let $q=1-p$. The transition probability matrix gives the probability of any state i moving to any other state j with one more flip. The rows represent present state and the columns represent the next state. For the $\mathrm{H}-\mathrm{T}>0$ process, the transition probability matrix P is:

From	To:	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{5}$						
$\mathbf{0}$	1	0	0	0	0	0
$\mathbf{1}$	q	0	p	0	0	0
$\mathbf{2}$	0	q	0	p	0	0
$\mathbf{3}$	0	0	q	0	p	0
$\mathbf{4}$	0	0	0	q	0	p

This says that from equality (state 0) there is no probability of moving to any other state: 0 is an absorbing barrier. From state 1 there is a q probability of moving to the absorbing barrier, no probability of staying in state 1 and a p probability of moving to state 2 . All rows sum to 1 . The transition probabilities for the $\mathrm{H}-\mathrm{T}<0$ process are the mirror image, with p and q reversed.

When either process starts at ± 1, how does it evolve? Using the rules of matrix multiplication, multiply P by itself n times, the resulting matrix P^{n} represents the probability of moving from any state i to any state j in n moves. As n increases without limit, P^{n} evolves toward a limiting matrix L . Because of the absorbing barrier at $0, L$ has this form:

From	To:	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{0}$	1	0	0	0	0	0
$\mathbf{1}$	$\mathrm{~L}_{1}$	0	0	0	0	0
$\mathbf{2}$	$\mathrm{~L}_{2}$	0	0	0	0	0
$\mathbf{3}$	$\mathrm{~L}_{3}$	0	0	0	0	0
$\mathbf{4}$	$\mathrm{~L}_{4}$	0	0	0	0	0

The limiting matrix must have the property that $L=P L$, i.e. multiplying L once more by P will not change it. Referring back to the definition of P, this means the L_{i} must satisfy these equations:

$$
\begin{aligned}
& L_{1}=q+p L_{2} \\
& L_{2}=q L_{1}+p L_{3} \\
& L_{3}=q L_{2}+p L_{4}
\end{aligned}
$$

$$
L_{i}=q L_{i-1}+p L_{i+1}
$$

Since these are all of the same form, there must be some regularity among the L_{i}. Let us guess that this regularity is a simple ratio: $L_{1}=k L_{0}, L_{2}=k L_{1}, L_{3}=k L_{2}, \ldots L_{i}=k L_{i-1} . \ldots$ Then the last equation becomes:

$$
L_{i}=q L_{i} / k+p k L_{i}
$$

Cancelling the L_{i} and rearranging,

$$
\mathrm{pk}^{2}-\mathrm{k}+\mathrm{q}=0
$$

This quadratic equation has two roots: $\mathrm{k}=\mathrm{q} / \mathrm{p}$ and $\mathrm{k}=1$. They lead to two different limiting matrices. The entries in a valid limiting matrix are probabilities and so are bounded by 0 and 1 . The first k can apply only when $q<p$, so L that becomes:

From	To:	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{0}$	1	0	0	0	0	0
$\mathbf{1}$	\mathbf{q} / \mathbf{p}	0	0	0	0	0
$\mathbf{2}$	$\mathrm{q}^{2} / \mathrm{p}^{2}$	0	0	0	0	0
$\mathbf{3}$	$\mathrm{q}^{3} / \mathrm{p}^{3}$	0	0	0	0	0
$\mathbf{4}$	$\mathrm{q}^{4} / \mathrm{p}^{4}$	0	0	0	0	0

When $q>p$, the above is not a valid probability matrix so the second k must apply, and L becomes:

From	To:	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{0}$	1	0	0	0	0	0
$\mathbf{1}$	$\mathbf{1}$	0	0	0	0	0
$\mathbf{2}$	1	0	0	0	0	0
$\mathbf{3}$	1	0	0	0	0	0
$\mathbf{4}$	1	0	0	0	0	0

When $p=q$ these matrices are identical.

The first matrix says that over an infinite number of flips the probability of moving from state 1 to equality is q / p. The second matrix says that this probability is 1 . We now have a complete picture of the problem. Assuming $q<p$, the two branches result in the same probability of ever reaching equality:

The final answer is therefore 2 q .

