Taylor's Formula says:

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

Where $f^{(n)}(a)=$ the $\mathrm{n}^{\text {th }}$ derivative of $f(x)$ at x -a.

Let's let $a=0$, to simplify the formula:

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!}(x)^{n}
$$

We want to find the Taylor series for three formulas: $\mathrm{e}^{\mathrm{x}}, \sin (\mathrm{x})$, and $\cos (\mathrm{x})$.
e^{x}

Recall that the derivative of of $e^{x}=e^{x}$

Taylor's Formula says:

$$
\begin{aligned}
& e^{x}=\sum_{n=0}^{\infty} \frac{e^{0}}{n!} x^{n} \\
& e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots
\end{aligned}
$$

$\underline{\sin (x)}$

Using Taylor's formula:

$$
\begin{gathered}
\sin (\mathrm{x})=\frac{\sin (0)}{0!} x^{0}+\frac{\cos (0)}{1!} x^{1}+\frac{-\sin (0)}{2!} x^{2}+\frac{-\cos (0)}{3!} x^{3}+\frac{\sin (0)}{4!} x^{4}+\frac{\cos (0)}{5!} x^{5}+\cdots \\
=\frac{0}{0!} \quad+\frac{1}{1!} x^{1}-\frac{0}{2!} x^{2}-\frac{1}{3!} x^{3}+\frac{0}{4!} x^{4}+\frac{1}{5!} x^{5}+\cdots \\
=x-\frac{1}{3!} x^{3}+\frac{1}{5!} x^{5}-\frac{1}{7!} x^{7}+\cdots
\end{gathered}
$$

$\cos (x)$

Using Taylor's formula:

$$
\begin{gathered}
\cos (\mathrm{x})=\frac{\cos (0)}{0!} x^{0}+\frac{-\sin (0)}{1!} x^{1}+\frac{-\cos (0)}{2!} x^{2}+\frac{\sin (0)}{3!} x^{3}+\frac{\cos (0)}{4!} x^{4}+\frac{-\sin (0)}{5!} x^{5}+\cdots \\
=\frac{1}{0!}-\frac{0}{1!} x^{1}-\frac{1}{2!} x^{2}+\frac{0}{3!} x^{3}+\frac{1}{4!} x^{4}-\frac{0}{5!} x^{5}+\cdots \\
\\
=1 \quad-\frac{1}{2!} x^{2}+\frac{1}{4!} x^{4}-\frac{1}{6!} x^{6}+\frac{1}{8!} x^{8}+\cdots
\end{gathered}
$$

The question at hand is to solve for $\mathrm{e}^{\pi i}$. Let's start with putting $\pi \mathrm{i}$ in the Taylor series of e^{x}.

$$
\begin{aligned}
& e^{\pi \mathrm{i}}=1+\frac{\pi \mathrm{i}}{1!}+\frac{\pi \mathrm{i}^{2}}{2!}+\frac{\pi \mathrm{i}^{3}}{3!}+\frac{\pi \mathrm{i}^{4}}{4!}+\frac{\pi \mathrm{i}^{5}}{5!}+\frac{\pi \mathrm{i}^{6}}{6!}+\cdots \\
& e^{\pi \mathrm{i}}=1+\frac{\pi}{1!} i-\frac{\pi^{2}}{2!}-\frac{\pi^{3}}{3!} i+\frac{\pi^{4}}{4!}+\frac{\pi^{5}}{5!} i-\frac{\pi^{6}}{6!}+\cdots \\
& \text { (1) } e^{\pi \mathrm{i}}=1-\frac{\pi^{2}}{2!}+\frac{\pi^{4}}{4!}-\frac{\pi^{6}}{6!}+i\left[\frac{\pi}{1!}-\frac{\pi^{3}}{3!}+\frac{\pi^{5}}{5!}\right] \ldots
\end{aligned}
$$

These terms look reminiscent of those for $\sin (x)$ and $\cos (x)$. Let's look at the Taylor series for $\sin (\pi)$ and $\cos (\pi)$.
$\sin (\pi)=\pi \quad-\frac{1}{3!} \pi^{3}+\frac{1}{5!} \pi^{5}-\frac{1}{7!} \pi^{7}+\cdots$
$\cos (\pi)=1 \quad-\frac{1}{2!} \pi^{2}+\frac{1}{4!} \pi^{4}-\frac{1}{6!} \pi^{6}+\frac{1}{8!} \pi^{8}+\cdots$

We can conveniently plug these series into equation (1):

$$
e^{\pi \mathrm{i}}=\cos (\pi)+\mathrm{i} \times \sin (\pi) \ldots
$$

$\sin (\pi)=0$ and $\cos (\pi)=-1$, so:

$$
e^{\pi \mathrm{i}}=-1
$$

