

Let C, D, and E be the centers of the three circles.
Let F be the point directly to the right of C .
Since the diameter is twice the radius, $\mathrm{BJ}=50$
$\mathrm{HI}=\mathrm{BJ}=50$
$H F=A C=10$
DI $=18$
DF $=50-10-18=22$
$C D=A C+D F=10+18=28$
By the Pythagorean Theorem, CF $=\sqrt{28^{2}-22^{2}}=\sqrt{300}=10 \sqrt{3}$
$A H=C F=10 \sqrt{3}$
$\mathrm{EG}=50-25-18=7$
$D E=18+25=43$
By the Pythagorean Theorem, DG $=\sqrt{43^{2}-7^{2}}=\sqrt{1800}=30 \sqrt{2}$
$A B=A H+D G=10 \sqrt{3}+30 \sqrt{2}=\sim 17.3205+37.4142=48.7347$

