

National Museum of Mathematics -- New York, New York

Question: A square wheel travels over a rounded track so that the center is always at the same height. The sides of the wheels have length 2. If the square makes a full rotation, how much horizontal distance does it cover?

Hints:
$\left(\cosh ^{-1}(x)\right)^{\prime}=\frac{1}{\sqrt{x^{2}-1}}$
$\cosh ^{-1}(x)=\ln \left(x+/-\sqrt{x^{2}-1}\right)$

Let (x, y) be the coordinates of the point where the wheel touches the track. The diagram above shows an example of a position of the wheel on the track. The least y can be is 0 when one corner is directly above the opposite corner. By the Pythagorean theorem, the distance from the center from the x axis in this position is $\sqrt{2}$. Thus, the center of the wheel will always be at a height equal to $\sqrt{2}$.

It stands to reason that the center of the wheel will always be directly above the point of contact with the track. By the Pythagorean theorem, the vertical distance from y to the center of the wheel at any given time will be $\sqrt{2}-\mathrm{y}$.

Next, let's focus on the small triangle A in the first image, which represents an incremental change as the wheel moves to the right.

For an incremental horizontal movement of 1 (not to be confused with the distance of the center of the square to the edge), the change in the vertical movement will be $\mathrm{dy} / \mathrm{dx}$. By the Pythagorean theorem, the change in the total distance of the point of contact to the curve will be:

$$
\sqrt{\left(\frac{d y}{d x}\right)^{2}+1}
$$

Simple geometry will show that θ from both triangles are the same.

Next, let's equalize the secant of θ in both triangles.
$\sqrt{2}-\mathrm{y}=\sqrt{\left(\frac{d y}{d x}\right)^{2}+1}$

Let's solve for $\mathrm{dy} / \mathrm{dx}$:
$(\sqrt{2}-y)^{2}=\left(\frac{d y}{d x}\right)^{2}+1$
$\left(\frac{d y}{d x}\right)^{2}=(\sqrt{2}-y)^{2}-1$
$\frac{d y}{d x}=\sqrt{(\sqrt{2}-y)^{2}-1}$

Let's break up that $\mathrm{dy} / \mathrm{dx}$:
$\frac{1}{\sqrt{(\sqrt{2}-y)^{2}-1}} d y=1 d x$

Let's let $u=\sqrt{2}-y$
$d u=-d y$
$d y=-d u$
$\frac{-1}{\sqrt{u^{2}-1}} d u=1 d x$

Recall the first hint:
$\left(\cosh ^{-1}(x)\right)^{\prime}=\frac{1}{\sqrt{x^{2}-1}}$

Integrating both sides we get:
$\cosh ^{-1}(u)+c=x$
$\cosh ^{-1}(\sqrt{2}-y)+\mathrm{c}=\mathrm{x}$

Let's solve for the constant of integration c . Consider the situation where the square is on the top of the curve. Let's set that as the starting point, where $x=0$. As stated before, the distance from the x-axis to the center of the circle is sqrt(2), so at $x=0, y=\operatorname{sqrt}(2)-1$. Putting that point into our equation:
$\cosh ^{-1}(\sqrt{2}-(\sqrt{2}-1))+c=0$
$\cosh ^{-1}(1)+c=0$
$\cosh ^{-1}(1)=-c$

Take the $\cosh ()$ of each side:
$1=\cosh (-c)$
$1=\left(e^{-c}+e^{c}\right) / 2$
$2=e^{-c}+e^{c}$

This can be true at $\mathrm{c}=0$ only, thus $\mathrm{c}=0$.
Now our equation is:
$\cosh ^{-1}(\sqrt{2}-y)=x$

Recall that the square started flat, at $\mathrm{x}=0$. In $1 / 8$ of a revolution, y will be 0 , and x will be the horizontal distance covered:
$x=\cosh ^{-1}(\sqrt{2})$

Recall our second hint:
$\cosh ^{-1}(x)=\ln \left(x+/-\sqrt{x^{2}-1}\right)$
$x=\ln (\sqrt{2}+/-\sqrt{2-1})$
$x=\ln (\sqrt{2}+1)=\sim 0.8814$

The question asked what is the horizontal distance covered with a full revolution, which will be eight times that of $1 / 8$ of a revolution, or:
$8 \times \ln (\sqrt{2}+1)=\sim 7.0510$

