## Problem 247

Question: In the following diagram, what is the area of the green region?
10


Answer:

First, let's change the dimensions to $2 \times 1$, to simplify the math, reducing the scale of the area by a factor of $10 \times 5 / 2 \times 1=25$. We will multiply by 25 at the end to scale back up. Second, let's flip over the image, for reasons we'll see soon. That gives us:


Let's use geometry to solve the problem. Let's place the center of the bottom of the rectangle at coordinate $(0,0)$.

The equation for the circle is $x^{2}+y^{2}=1$. This illustrates why I wanted to scale down and flip, to get such a simple equation for the circle.

The equation of the blue line is $y=x / 2+1 / 2$. Let's rewrite that as $x=2 y-1$.

Let's solve for $x$ and $y$ to find where the blue line intersects the semicircle.
$x^{2}+y^{2}=1$
$(2 y-1)^{2}+y^{2}=1$
$5 y^{2}-4 y=0$
$5 y-4=0$
$y=0.8$

Putting that in $x=2 y-1$ gives us
$x=2 \times 0.8-1=0.6$.

Next, let's label some of the regions in play.


Let's start by find the slice of the semicircle identified as C + D. We already know the coordinate where the blue line crossed the semicircle by the green region is $(0.6,0.8)$. So, the side of triangle $D$ are $0.6,0.8$, and 1 . The area of $D$ is easily found as $(1 / 2) \times(0.6 \times 0.8)=0.24$.

To find $C$, let's find the area of the slice of the semicircle $C+D$ and subtract $D$ from it.

The angle of $D$ at $(0,0)$ can be expressed as $\tan ^{-1}(3 / 4), \cos ^{-1}(4 / 5)$, or $\sin ^{-1}(3 / 5)$. I'll arbitrarily decide to go with $\cos ^{-1}(4 / 5)=\sim 0.6435$ (in radians).

The area of the whole circle is pi, divided up by $2 \times \pi$ radians, so the area of the circle ( $C+D$ ) formed by an angle of $\cos ^{-1}(4 / 5)$ radians is $\cos ^{-1}(4 / 5) / 2=\sim 0.3218$.

We subtract $D$ from that slice to get the area of $C=\cos ^{-1}(4 / 5) / 2-0.24=\sim 0.0818$.

The area of rectangle $A+C$ is $0.2 \times 0.6=0.12$. We know $C$, so we can find $A$ as 0.12 $-\left[\cos ^{-1}(4 / 5) / 2-0.24\right]=0.36-\cos ^{-1}(4 / 5)=\sim 0.0382$.

The two legs of triangle $B$ are 0.2 and 0.4 , thus the area of $B$ is $(0.2 \times 0.4) / 2=0.04$.

Thus, the green region is $A+B=$
$0.36-\cos ^{-1}(4 / 5)+0.04=$ $0.4-\cos ^{-1}(4 / 5) / 2=\sim 0.0782494$

Remember we scaled the problem down by a factor of 25 at the beginning, so let's scale that area up by a factor of 25 , to account for the $5 \times 10$ region to begin with, to get an answer of $10-12.5 \times \cos ^{-1}(4 / 5)=\sim 1.95624$

My thanks to Presh Talwalker for this problem, who in turn gives credit to Xavier in Shanghai. Presh's YouTube channel is Mind Your Decisions. He goes over a solution to this problem at https://www.youtube.com/watch?v=2Seb863FnfU

Michael Shackleford
MathProblems.info
April 20, 2019

