Points on a Circle

Problem

We randomly distribute n points on the circumference of a circle. What is the probability that they will all fall in a common semi-circle?

Solution

We can solve the problem by induction. Given any n-1 points on a circle, let α_{n-1} be the smallest radial angle that subtends them. Let X_n be the event that α_n and its predecessors are all less than π :

 X_n : { $\alpha_n \le \pi$, $\alpha_{n-1} \le \pi$, ... $\alpha_3 \le \pi$,}

We are looking for the probability of X_n . We will start with the conditional probability of X_n given X_{n-1} . It is clear from the diagram that X_n will occur if α_n falls in any of the top three segments, but not if it falls in the lower segment.

$$Prob(X_{n} | X_{n-1}) = \frac{2\pi - \alpha_{n-1}}{2\pi} = 1 - \frac{\alpha_{n-1}}{2\pi}$$
(1)

Consider next the integral of α_n over the range of possible α_n given X_{n-1} , i.e. over the top three segments of the circle. The expected value of α_n if the nth point falls in the top segment is α_{n-1} . The expected value of α_n if the nth point falls in either of the two side segments is the average of its values at the endpoints of those segments or $(\pi + \alpha_{n-1})/2$. Multiply each of these expected values times the probability of their occurrence:

$$\left[\frac{\alpha_{n-1}}{2\pi}\right](\alpha_{n-1}) + \left[\frac{2(\pi - \alpha_{n-1})}{2\pi}\right]\left(\frac{\pi + \alpha_{n-1}}{2}\right) = \frac{\alpha_{n-1}^2 + \pi^2 - \alpha_{n-1}^2}{2\pi} = \frac{\pi}{2}$$
(2)

It is easy to find the probability of X_3 from (1) since the expected value of α_2 over its full range $[0...\pi]$ is $\pi/2$:

$$Prob(X_3) = 1 - \frac{1}{2\pi} \frac{\pi}{2} = \frac{3}{4}$$

The probability of X_4 is only slightly harder. By (1) above:

$$Pr ob(X_4 | X_3) = 1 - \frac{\alpha_3}{2\pi}$$

Integrating over $\alpha_3 \leq \pi$ and invoking (2) above

$$Prob(X_4) = \frac{3}{4} - \frac{1}{2\pi} \frac{\pi}{2} = \frac{1}{2} = \frac{4}{8}$$

These first two n suggest that the answer might have the form $\left| \Pr ob(X_n) = \frac{n}{2^{n-1}} \right|$ (3)

More generally, α_2 is uniformly distributed over $[0...\pi]$, but the other α have conditional probabilities as follows:

$$p(\alpha_{k} \mid \alpha_{k-1}) = \begin{cases} \frac{\alpha_{k-1}}{2\pi} \text{ point probability on } \alpha_{k-1} \\ \frac{2}{2\pi} \\ \text{ uniform on } [\alpha_{k-1} \dots \pi] \end{cases}$$

$$Pr ob(X_{n}) = \int_{0}^{\pi} \int_{x_{2}}^{\pi} \dots \int_{x_{n-2}}^{\pi} p(\alpha_{2}) p(\alpha_{3} | \alpha_{2}) \dots p(\alpha_{n-1} | \alpha_{n-2}) p(\alpha_{n} | \alpha_{n-1}) d\alpha_{n} d\alpha_{n-1} \dots d\alpha_{3} d\alpha_{2}$$

$$= \int_{0}^{\pi} \int_{x_{3}}^{\pi} \dots \int_{n-2}^{\pi} \int_{n-1}^{\pi} p(\alpha_{2}) p(\alpha_{3} | \alpha_{2}) \dots p(\alpha_{n-2} | \alpha_{n-3}) p(\alpha_{n-1} | \alpha_{n-2}) \left[1 - \frac{\alpha_{n-1}}{2\pi} \right] d\alpha_{n-1} d\alpha_{n-2} \dots d\alpha_{3} d\alpha_{2}$$

$$= Pr ob(X_{n-1}) - \frac{1}{2\pi} \frac{\pi}{2} \int_{0}^{\pi} \int_{x_{3}}^{\pi} \dots \int_{x_{n-3}}^{\pi} p(\alpha_{2}) p(\alpha_{3} | \alpha_{2}) \dots p(\alpha_{n-2} | \alpha_{n-3}) d\alpha_{n-2} \dots d\alpha_{3} d\alpha_{2}$$

$$= Pr ob(X_{n-1}) - \frac{1}{4} Pr ob(X_{n-2})$$

This recurrence relationship allows us to prove (3) by induction. We know that (3) holds for n=3 and n=4. Suppose it holds generally for numbers up to n-1. Then the recurrence relation above becomes:

$$\Pr ob(X_n) = \frac{n-1}{2^{n-2}} - \frac{1}{4} \frac{n-2}{2^{n-3}} = \frac{2n-2-n+2}{2^{n-1}} = \frac{n}{2^{n-1}}$$

which establishes (3) as the general solution.