
Points on a Circle

 
Problem 

We randomly distribute n points on the circumference of a circle.  What is the probability 
that they will all fall in a common semi-circle?    

Solution 

We can solve the problem by induction.  Given any n-1 points on a circle, let n-1 be the 
smallest radial angle that subtends them.  Let Xn be the event that n and its predecessors are all 
less than : 
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We are looking for the probability of Xn.  We will start with the conditional probability of Xn given 
Xn-1. It is clear from the diagram that Xn will occur if n falls in any of the top three segments, but 
not if it falls in the lower segment.  

2
1

2
2

)X|X(obPr 1n1n
1nn 

(1) 

Consider next the integral of n over the range of possible n given Xn-1, i.e. over the top 
three segments of the circle.  The expected value of n if the nth point falls in the top segment is 

n-1.  The expected value of n if the nth point falls in either of the two side segments is the 
average of its values at the endpoints of those segments or ( + n-1)/2.  Multiply each of these 
expected values times the probability of their occurrence:  
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(2)  

n-1 

- n-1 - n-1 



 
It is easy to find the probability of X3 from (1) since the expected value of 2 over its full 

range [0… ] is /2: 
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The probability of X4 is only slightly harder.  By (1) above: 
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Integrating over 3  and invoking (2) above 
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These first two n suggest that the answer might have the form    
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(3) 

More generally, 2 is uniformly distributed over [0… ], but the other 

 

have conditional 
probabilities as follows: 
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This recurrence relationship allows us to prove (3) by induction.  We know that (3) holds 
for n=3 and n=4.  Suppose it holds generally for numbers up to n-1.  Then the recurrence relation 
above becomes: 
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which establishes (3) as the general solution.    


