Points on a Circle

Problem

We randomly distribute n points on the circumference of a circle. What is the probability that they will all fall in a common semi-circle?

Solution

We can solve the problem by induction. Given any $n-1$ points on a circle, let α_{n-1} be the smallest radial angle that subtends them. Let X_{n} be the event that α_{n} and its predecessors are all less than π :

$$
X_{n}:\left\{\alpha_{n} \leq \pi, \alpha_{n-1} \leq \pi, \ldots \alpha_{3} \leq \pi,\right\}
$$

We are looking for the probability of X_{n}. We will start with the conditional probability of X_{n} given X_{n-1}. It is clear from the diagram that X_{n} will occur if α_{n} falls in any of the top three segments, but not if it falls in the lower segment.

$$
\begin{equation*}
\operatorname{Prob}\left(X_{n} \mid X_{n-1}\right)=\frac{2 \pi-\alpha_{n-1}}{2 \pi}=1-\frac{\alpha_{n-1}}{2 \pi} \tag{1}
\end{equation*}
$$

Consider next the integral of α_{n} over the range of possible α_{n} given X_{n-1}, i.e. over the top three segments of the circle. The expected value of α_{n} if the $n^{\text {th }}$ point falls in the top segment is α_{n-1}. The expected value of α_{n} if the $\mathrm{n}^{\text {th }}$ point falls in either of the two side segments is the average of its values at the endpoints of those segments or $\left(\pi+\alpha_{n-1}\right) / 2$. Multiply each of these expected values times the probability of their occurrence:

$$
\begin{equation*}
\left[\frac{\alpha_{n-1}}{2 \pi}\right]\left(\alpha_{n-1}\right)+\left[\frac{2\left(\pi-\alpha_{n-1}\right)}{2 \pi}\right]\left(\frac{\pi+\alpha_{n-1}}{2}\right)=\frac{\alpha_{n-1}^{2}+\pi^{2}-\alpha_{n-1}^{2}}{2 \pi}=\frac{\pi}{2} \tag{2}
\end{equation*}
$$

It is easy to find the probability of X_{3} from (1) since the expected value of α_{2} over its full range $[0 \ldots \pi]$ is $\pi / 2$:

$$
\operatorname{Prob}\left(X_{3}\right)=1-\frac{1}{2 \pi} \frac{\pi}{2}=\frac{3}{4}
$$

The probability of X_{4} is only slightly harder. By (1) above:

$$
\operatorname{Prob}\left(X_{4} \mid X_{3}\right)=1-\frac{\alpha_{3}}{2 \pi}
$$

Integrating over $\alpha_{3} \leq \pi$ and invoking (2) above

$$
\operatorname{Prob}\left(X_{4}\right)=\frac{3}{4}-\frac{1}{2 \pi} \frac{\pi}{2}=\frac{1}{2}=\frac{4}{8}
$$

$$
\begin{equation*}
\text { These first two } n \text { suggest that the answer might have the form } \operatorname{Prob}\left(X_{n}\right)=\frac{n}{2^{n-1}} \tag{3}
\end{equation*}
$$

More generally, α_{2} is uniformly distributed over $[0 \ldots \pi]$, but the other α have conditional probabilities as follows:

$$
\mathrm{p}\left(\alpha_{\mathrm{k}} \mid \alpha_{\mathrm{k}-1}\right)=\left\{\begin{array}{l}
\frac{\alpha_{k-1}}{2 \pi} \text { point probability on } \alpha_{k-1} \\
\frac{2}{2 \pi} \text { uniform on }\left[\alpha_{k-1} \ldots\right.
\end{array}\right\}
$$

$\operatorname{Prob}\left(X_{n}\right)=\int_{b}^{\pi} \int_{\alpha_{2}}^{\pi} \ldots \int_{\alpha_{n-2}}^{\pi} \int_{\alpha_{n-1}}^{\pi} p\left(\alpha_{2}\right) p\left(\alpha_{3} \mid \alpha_{2}\right) \ldots p\left(\alpha_{n-1} \mid \alpha_{n-2}\right) p\left(\alpha_{n} \mid \alpha_{n-1}\right) d \alpha_{n} d \alpha_{n-1} \ldots d \alpha_{3} d \alpha_{2}$ $=\int_{0}^{\pi} \int_{\alpha_{3}}^{\pi} \ldots \int_{n-2}^{\pi} \int_{h-1}^{\pi} p\left(\alpha_{2}\right) p\left(\alpha_{3} \mid \alpha_{2}\right) \ldots p\left(\alpha_{n-2} \mid \alpha_{n-3}\right) p\left(\alpha_{n-1} \mid \alpha_{n-2}\right)\left[1-\frac{\alpha_{n-1}}{2 \pi}\right] d \alpha_{n-1} d \alpha_{n-2} \ldots d \alpha_{3} d \alpha_{2}$
$=\operatorname{Prob}\left(X_{n-1}\right)-\frac{1}{2 \pi} \frac{\pi}{2} \int_{0}^{\pi} \int_{\alpha_{3}}^{\pi} \cdots \int_{\alpha_{n-3}}^{\pi} p\left(\alpha_{2}\right) p\left(\alpha_{3} \mid \alpha_{2}\right) \ldots p\left(\alpha_{n-2} \mid \alpha_{n-3}\right) d \alpha_{n-2} \ldots d \alpha_{3} d \alpha_{2}$
$=\operatorname{Prob}\left(X_{n-1}\right)-\frac{1}{4} \operatorname{Prob}\left(X_{n-2}\right)$
This recurrence relationship allows us to prove (3) by induction. We know that (3) holds for $n=3$ and $n=4$. Suppose it holds generally for numbers up to $n-1$. Then the recurrence relation above becomes:

$$
\operatorname{Pr} o b\left(X_{n}\right)=\frac{n-1}{2^{n-2}}-\frac{1}{4} \frac{n-2}{2^{n-3}}=\frac{2 n-2-n+2}{2^{n-1}}=\frac{n}{2^{n-1}}
$$

which establishes (3) as the general solution.

